Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate).

نویسندگان

  • Luc Alaerts
  • Etienne Séguin
  • Hilde Poelman
  • Frédéric Thibault-Starzyk
  • Pierre A Jacobs
  • Dirk E De Vos
چکیده

An optimized procedure was designed for the preparation of the microporous metal-organic framework (MOF) [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate). The crystalline material was characterized by X-ray diffraction, optical microscopy, SEM, X-ray photoelectron spectroscopy, N2 sorption, thermogravimetry, and IR spectroscopy of adsorbed CO. CO adsorbs on a small number of Cu2O impurities, and particularly on the free CuII coordination sites in the framework. [Cu3(btc)2] is a highly selective Lewis acid catalyst for the isomerization of terpene derivatives, such as the rearrangement of alpha-pinene oxide to campholenic aldehyde and the cyclization of citronellal to isopulegol. By using the ethylene ketal of 2-bromopropiophenone as a test substrate, it was demonstrated that the active sites in [Cu3(btc)2] are hard Lewis acids. Catalyst stability, re-usability, and heterogeneity are critically assessed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors

Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400,  500, and 600°C. It has also been found that the reaction temperature pla...

متن کامل

Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.

متن کامل

Metal-organic frameworks and β-cyclodextrin-based composite electrode for simultaneous quantification of guanine and adenine in a lab-on-valve manifold.

In this work, a novel chemically modified electrode is constructed based on metal-organic frameworks and β-cyclodextrin (Cu3(BTC)2/β-CD, BTC = benzene-1,3,5-tricarboxylate) composite material. The electrode was used for simultaneous determination of guanine and adenine in a sequential injection lab-on-valve format and exhibited sensitive responses to guanine and adenine oxidation due to the π-π...

متن کامل

Copper benzene tricarboxylate metal-organic framework with wide permanent mesopores stabilized by Keggin polyoxometallate ions.

Porous solids with organized multiple porosity are of scientific and technological importance for broadening the application range from traditional areas of catalysis and adsorption/separation to drug release and biomedical imaging. Synthesis of crystalline porous materials offering a network of uniform micro- and mesopores remains a major scientific challenge. One strategy is based on variatio...

متن کامل

Antifungal activity of water-stable copper-containing metal-organic frameworks

Although metal-organic frameworks (MOFs) or porous coordination polymers have been widely studied, their antimicrobial activities have not yet been fully investigated. In this work, antifungal activity of copper-based benzene-tricarboxylate MOF (Cu-BTC MOF), which is water stable and industrially interesting, is investigated against Candida albicans, Aspergillus niger, Aspergillus oryzae and Fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 12 28  شماره 

صفحات  -

تاریخ انتشار 2006